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Abstract-Heat transfer to an MHD fluid in the thermal entrance region of a flat duct has been investi- 
gated. The flow is laminar and fully developed Hartmann flow, and heat flux at the wall is considered to 
be constant. The developing temperature profiles as well as the local Nusselt number are presented graphic- 
ally for the heat generation parameter of - 1.0, -0.5, 0, 0.5 and 1.0; for the Hartmann number of 0, 4 
and 10; and for the electric field factor of 0.5, 0.8 and 1.0. The results presented are applicable for the 

cases with any Prandtl number. Comparisons are presented for certain cases with the previous work. 

NOMENCLATURE 

4 surface area of channel walls through 
which heat is being transferred ; 

4 one-half of duct height ; 

4, B,, ($2 4, constants defined by equation 

Boy 
CP 
De, 
E, 

e, 

H, 
Ho, 

k 
J, 
k 
M, 

Nu,, 

PT 

(11); 
magnetic field induction ; 
specific heat ; 
equivalent diameter of the duct, 4a ; 
electric field strength; 

E 
= -, electric field magnitude factor ; 

uoBo 
magnetic field intensity ; 
magnetic field imposed perpendicular 
to bounding walls ; 
heat-transfer coefficient ; 
electric current density; 
thermal conductivity; 
= p,H,a,/(a,/p), Hartmann number ; 

hD 
= y, local Nusselt number; 

fluid pressure gradient in equation (1) ; 
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u, 
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UO, 
V, 

X, 

X, 

Y, 

YY 
Z, 

= s Prandtl number. 
k’ 

7 

rate of heat transfer ; 

= 2, negative rate of heat transfer 

per unit area ; 

= 7, Reynolds number; 

temperature ; 
temperature of fluid at entrance of 
channel ; 

= i, dimensionless velocity; 

velocity in x-direction ; 
average fluid velocity ; 
fluid velocity vector ; 

kx 
= ~ = &, dimensionless 

pa2uOC, 
variable distance al&g length of duct ; 
variable distance along length of duct ; 
= y/a, dimensionless variable distance 
atiross height of duct ; 
variable distance across height of duct ; 
variable distance along width of duct. 

Greek symbols 

rl, 
4P 

= ,q”’ heat-generation parameter ; 
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density ; 
viscosity ; 
magnetic permeability ; 
electric conductivity ; 
time ; 

t - to 
= -, dimensionless temperature ; 

aq”/k 

= s, pseudo-10~1 Nusselt number. 

Subscripts 

6, bulk property or mean fluid property ; 

1, at jth position along x-axis ; 

k at kth position along y-axis; 
W > at walls or plates ; 

X, local property at position x. 

INTRODUCTION 

THE study of heat transfer in an electrically con- 
ducting fluid flowing within a magnetic field has 
become quite important. This is due to the de- 
velopment of such devices as magnetohydro- 
dynamic accelerators, generators, and similar 
devices. A flat duct considered in this work has 
applications in such devices. 

The general literature on MHD heat transfer 
before 1962 is well summarized by Romig [l]. 
Siegel [2] investigated heat transfer to the region 
where the temperature distribution is fully 
developed and the heat flux at the wall is uniform. 
Alpher [3], Yen [4], and Snyder f5] investigated 
the same problem but they assumed that the 
duct walls are electrically conducting. Regirer 
[6] and Gershuni and Zkukhovitskii [7] studied 
the problem but neglected the Joule heating in 
the fluid. 

The case considering constant wall tempera- 
ture with viscous and electrical dissipation in the 
thermal entrance region was investigated by 
Nigam and Singh [8]. However, the Joule heat- 
ing term in this investigation was incorrectly 
represented [9], rendering their results invalid. 
Erickson et al. ClO) using a finite difference 
analysis, presented the results for this case. Jam 
and Srinivasan [ 111 extended this problem to 

include the effects of electrically conducting 
walls. 

Mi~hiyoshi and Matsumoto [12] studied both 
the case of constant wall temperature and the case 
of uniform heat flux at the wall, but neglected 
the heat produced by viscous dissipation, They 
considered only the open circuit case, that 
corresponds to e = 1.0. 

The problem investigated in this work is the 
heat transfer to an MHD fluid for the case of 
uniform heat flux at the wall in the thermal 
entrance region. Neither viscous dissipation nor 
Joule heating is neglected, and there can be a net 
electric current flow parallel to the wall and 
perpendicular to the Bow direction. This same 
problem was investigated previously by Perl- 
mutter and Siegel [9]. They separated the prob- 
lem into two parts: a problem which has a 
specified uniform heat flux at the wall but no 
internal heat generation in the fluid, and a 
problem which has internal heat generation 
within the fluid but no heat transfer at thechannel 
wall. By the superposition of these two separate 
solutions, one can obtain the general solution 
and the temperature distribution. The solution 
for each part of the problem is presented in 
graphical form for certain cases. It is, however, 
rather tedious and difficult to carry out the 
superposition and obtain a temperature distri- 
bution at any position for any desired case. 
Also the overall effects of various parameters on 
the heat transfer are not obvious in this type of 
presentation. 

The purpose of this paper is to present the 
results of the problem in an easily interpretable 
manner so that the overall effects of the various 
parameters can easily be demonstrated. 

The developing tem~rature profiles and the 
local Nusselt number for the heat-generation 
parameter of - 1.0, -0.5, 0, O-5 and 1.0 are 
presented for the Hartmann number of 0,4 and 
10. The results are compared with those obtained 
by other investigators. 

BASIC EQUATIONS 

The geometry under consideration, illustrated 
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in Fig. 1, consists of two semi-in~nite parallel 
plates extending in the x- and z-directions. The 
electrically conducting fluid flows in the x- 
direction, the magnetic field is imposed in the 
y-direction, and the electric current flows in the 
z-direction. We consider the steady, laminar, 

FIG. 1. Parallel plate channel with imposed uniform wall 
heat flux and transverse magnetic field. 

incompressible, and fully developed Hartmann 
flow, and the physical properties of fluid are 
independent of temperature and are constant. 

The fully developed velocity profile was ori- 
ginally obtained by Hartmann [13]. Cowling 
[14] gave the Hartmann velocity profile for 
zero net current in the following form : 

PM cash M 
et=,, 

@Se Ho [ 

- cash WY/~) 
sinh M 3 

t1) 

wherep is fluid pressure gradient ; M is Hartmann 
number, equivalent to ~~~*u~(~~/~); p, is 
magnetic permeability, b, is electric conductivity, 
and H, is applied magnetic field. The average 
value of p between y = +a is 

u 
-_=u-_M 

cash M - cash M~/a) C M cash M - sinh M 1 ’ UO 
(3) 

which is independent of the electric field. 
The general form of the energy equation for 

unidirectional steady flow of an incompressible 
fluid with constant properties and with negligible 
heat conduction in the fluid flow direction can be 
simplified to 

dt k d=t 2 J2 u__=---+L au +-_ 
ax PC, ay 0 PC, ay PC,% 

(4) 

The electric current intensity J can be expressed 

by 

J=uoaeBo -e+_4f. 
[ 1 UO 

(5) 

where e is the electric field magnitude factor. 
With this value for J, the energy equation 

becomes 

at k a2t ji ad 
u-=--3+-- ax PC,~Y 0 PC, ay 

ug@3~ 
+-- 

PC, ( > -e -t- -!- 
%I 

2. (6) 

Introducing the dimensionless parameters 

Pr = 5 Prandtl number 
k ’ > 

lJ =$M cash M - cash MY 
M cash M - sinh M 1 ' 

x= kx x/a 
pa2~o~~ = ~ Re, Pr’ 

y 2 
a’ 

0 -t--o 
q”a/k ’ 

j udy ; 
u0 = -a 

j= dy 

= & [M coshM - 11. (2) 
r = 2, heat-generation parameter, 

e = equation (6) then becomes 

Then the dimensionless velocity profile used in 
this work is 
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The boundary conditions are 

1. 0 =0 at x=0 and 

O<Y<l, 

2. g = 0 

n-l 4 
at Y=O and (8) 

0 < X, 

3. e = 1 
(7Y 

at Y=l and 

0 < x. 
The third boundary condition can be developed 
from the assumption of constant heat flux at the 
wall [15]. 

SOLUTIONS OF THE ENERGY EQUATIONS 

Y3J-w I t-x 
XfO 

j-l j j+l 

Ftc;. 2. Mesh network for difference representations 

In order to solve the energy equation, the Substituting the difference equations, equation 

velocity profile is first determined from equation (9), into the energy equation, equation (7), the 

(3) and the energy equation is solved by employ- following equation, in which the 0 terms with 

ing a finite difference analysis. The finite dif- subscript j + 1 are the unknowns and the 0 

ference equations are (see Fig. 2 for the mesh terms with subscript j are the known variables, 

network) is obtained. 

u = Uj,k, [Ck]ej+l,k+l + [Aklej+l,k 

130 + [Bklej+l,k-l = EDk]r tll) 
-= 

Oj,k+l - ej,k- 1 

ay 2AY ’ where 

80 
-= 

ej+l,k - 0j.k 

ax AX ' 
(9) 

Lckl = LBkl = -&Y 

a28 
ay2= 

Wj+l,k+l - 2ej+l,k + ej+l,k-1) Uj,k l 
2(AY)2 LAkl = E + (A~72 

+ Pj,k+l - 2ej.k + ej,k-1) 

2(AY)2 ' [&I = -[ckl ej,k+ 1 - & ej,k 

au 
-= 

CUj+l,k+l - Uj+l,k-l) 

ay 2AY ’ - [Cklej,k-l + gej,k + @$jT 

The boundary conditions in the finite difference 
form become 

’ (Uj+l,k+l - uj+l.k-1)2 

i.e -0 
+ hf’?f(e - uj,k)2. 

0,k - at 

x=0 and O<Ydl, 
Substituting k = 1, 2, . . , n into equation (11) 
with the boundary conditions given by equation 

2. ej+l,2 = ej+l,0 at (IO) (lo), n unknowns and n simultaneous equations 

x>o and Y = 0, are obtained. These equations are solved by the 

3. @j+i,,,+i = @j+i,. + AY 
Thomas method [16]. It is important to achieve 

at convergence to the true solution of the differen- 
x>o and Y = 1. tial equations within the available computer 
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U(AYf’ . 
storage capacity. When the value of ~ 

12(AX) ls 
kept less than O-05, the truncation errors are 
reduced from O(AXf and O(AY*) to O(AX*) and 
0(AY4) [lo, 173. Although the velocity, U, is in 
the range, 0 < U < 1.5, it is taken as 1.0 in 

U(AY)* 
calculating the values of p. 

12(AX) 
The mesh 

sizes employed are shown in Table 1. 

Table 1. Mesh sizes for finite difference solution of the energy 
equatjon 

X AX AY 
U(AY)’ 

N __ 
12(8X) 

0 

1 omo5 om625 160 OaO65 
04?Jo1 

1 0001 0.0125 80 0.013 
0.01 

i om5 0.0125 80 0@026 

@1 i @Ol 

1 
0.0125 80 04013 

2.5 

HEAT TRANSFER PARAMETERS 

The bulk temperature (or mixing mean tem- 
perature) is evaluated after the temperature 
profile has been determined by the following 
finite difference equation at X = (i f 1)AX 

The wall temperature is approximated in 
finite difference form as [15] 

= 4ej+l,n - Oj+l,n-I + 2AY 
3 . (13) 

The mean Nusselt number, Nu,, for constant 
heat flux at the wall is of secondary importance, 
and the local Nusselt number, Nu,, is desired. 
The Iocal Nusselt number may be used to evalu- 
ate the wall temperature at any position along 
the duct whereas the primary usefulness of the 
mean Nusselt number is in evaluating the tem- 
perature of fluid leaving the heat exchanger. 

The local Nusselt number is defined as 

(14) 

For the case of constant heat flux at the wall, 
the local Nusselt number reduces to [15, 171 

-4 
Nu, = do (15) 

where A0 is the difference of the wall temperature 
and the bulk temperature defined as 

(A@, = %,x - f&,x. 

RESULTS AND DISCUSSION 

The results for the following parameters are 
presented : the Hartmann number of 0,4 and 10 ; 
the electric field factor of 0.5, 08 and 1.0; and 
the heat-generation parameter of - 1.0, -0*5,0, 
0.5 and 1-O. The results presented are applicable 
to any Prandtl number. 

The electric field factor, e, is equivalent to the 
efticiency of an MHD generator and may be 
defined as the ratio of the electric power de- 
veloped to the power necessary to produce the 
flow of the fluid. The value of e for the maximum 
power generation is 0.5. The generally accepted 
value of e, for the compromise which must be 
made between the conflicting requirement for 
the maximum power and for the maximum 
efficiency in MHD generators, is 08 [lS]. An 
open circuit, or no net electrical current flow in 
the channel, occurs when the electrical field 
factor is 1.0. 

The heat-generation parameter, q, is similar to 
the Brinkman number which is a criterion for the 
negligibility of viscous dissipation. When r] is 
positive, heat is transferred into the system 
through the wails. If q is negative, heat is trans-. 
ferred from the fluid through the walls to the 
surroundings [ 151. 

The dimensionless temperature distributions 
between the parallel plates at various positions 
in the thermal entrance region are presented in 
Figs. 3(a-c) and 4. In Figs. 5(a-c) and 6 the 
variations of dimensionless wall temperature, 
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;.I; 
-0.2 0 0.2 -0.2 0 0.4 0.8 

y;Ii.L 

-1.2 -0.8 -0.4 

_~~~ 

-8.0 -60 -4.0 -2.0 
O 8 2'o 

4.0 6.0 8.0 IO.0 

FIG. 3(a). Development of temperature profiles in the thermal entrance region M = 4, e = @5. 

ilgf 
-0.2 0.2 

8 
04 0 0.4 0.8 

y; 

-1.2 -0.6 -0.4 0 0.4 0.8 I.2 I.4 2.0 

/z; 

-6.0 -4.0 -2.0 0 2.0 4.0 6.0 8.0 IO.0 
8 

FIG. 3(b). Development of temperature profiles in the thermal entrance region M = 4, 
c = 0.8. 



HEAT TRANSFER TO MHD FLOW 119 

j”F 
-0.2 0 0.2 -04-0.2 0 -0.2 04 0.6 

8 

4 0.6 I.2 I.6 2.0 2.4 

y;; 

-69 -4.0 2.0 0 8 2.0 3.0 6.0 6.0 IO.0 

FIG. 3(c). Development of temperature profiles in the thermal entrance region M = 4, 
e = 1.0. 
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FIG. 4. Development of temperature profiles in the thermal entrance region M = 1.0, e = 08. 
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FIG. 5(a). Variation of wall and bulk temperatures, M = 4, e = 0.5. 

-4 - 

-8. , .t 
IWp 4 1x10-3 

$ 
4 1*10’2 4 

FiG, s(b). Variation of wall and bulk temperatures, &f = 4, e = 0.8. 
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FIG. 5(c). Variations of wall and bulk temperatures, M = 4, e = 1.0. 

12. 

6. 

4. 

e 

x 
16 

FIG. 6. Variations of wall and bulk temperatures, h4 = 10, e = 0.8 
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8,, and bulk temperature, Qbt with dimensionless 
distance along the flow direction are presented. 
The pseudo-local Nusselt number, rl/, defined 
as 

is plotted in Figs. ,(a>; and “k:‘The quantity $ 
is identical to the local Nusselt number except 
that it changes sign depending upon the relative 
magnitudes of 0, x and &,x ; thus, the use of $ 
reveals the behavior of the system better than 
the use of Nu,. Additional numerical results are 
given in reference [19]. 

The shape of the dimensionless temperature 
distribution for positive values of the heat- 
generation parameter, 4, presented in Figs. 
3(a-c) and 4 is similar to those presented by 
Brinkman [20] for flow in a capillary with insu- 
lated walls (4 = 0), a special case of constant 
heat flux at the wall. The shape of these curves, 
as well as those when q is less than zero, is also 
similar to those obtained by Novotny and Eckert 
[21] for free convection flow between parallel 

plates with uniform heat sources in the fluid. 
Neither of the above two references considered 
flow in an MHD channel. 

The dimensionless temperature is uniform 
and equal to zero at the channel entry (X = 0). 
The temperature increases as the flow distance 
increases, because of heat generation by viscous 
dissipation and Joule heating. Since q is greater 
than zero when heat is added to the fluid through 
the wall, the combined effect of both external 
and internal heating is to increase the tem- 
perature of the fluid. When g is less than zero 
heat is transferred away from the fluid through 
the wall. Hence there is a competitive action 
between the internal heat generation and the 
external loss of heat. In this case, the dimension- 
less temperature increasing negatively is equiva- 
lent to the dimensional temperature increasing 
positively due to the definitions of the dimen- 
sionless temperature, 0, and the heat-generation 
parameter, q [15]. 

An increase in the electric field factor is equiva- 
lent to a decrease of electric current flow through 

Flc. 7(a). Pseudo-local Nusselt numbers, M = 4, e = 0.5. 
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-2oo- 

4 10-4 4 
X 

I o-3 4 

Is 

FIG. 7(b). Pseudo-local Nusselt numbers, M = 4, e = 0.8. 

FIG. 7(c). Pseudo-local Nusselt numbers, M = 4, e = 1.0 



784 CHING-LA1 HWANG. P. J. KNIEPER and LIANG-TSENG FAN 

4 10’4 4 IO” 

6 

4 

FIG. 8. Pseudo-local Nusselt numbers, M = I0 e = 0% 

the field, and is also proportional to a decrease 
of Joule heating in the fluid. Comparison among 
Figs. 3(a), (b) and (c) for a Hartmann number of 4 
shows that the rate of temperatI~re increase is 
reduced by increasing e. The same trend is ob- 
served for other values of Hartmann number 
[193. However, the difference between the 
centerline temperature and the wall temperature 
increases as e increases. This phenomenon is 
due to the increasing significance of the viscous 
dissipation, which is higher near the walls, as 
the Joule heating effect becomes smaller. 

Effects of the electric field factor, e, can also be 
observed when a comparison is made among 
Figs. 5(a), (b) and (cf for Hartmann number of 
4. Again, the reduction of wall and bulk tem- 
perature with increasing e can be observed, 
since there is a reduction in the Joule heating. 
The same trend can be observed for other values 
of Hartmann number [19]. Because of an in- 
crease in the difference between wall and bulk 
temperature accompanying an increase in e, 
there should be a decrease in the local Nusselt 
number, or the absolute value of the pseudo 
local Nusselt number, tl/, should decrease as e 
increases. This is shown in Figs. 7(a), (b) and 

(c) for Hartmann number of 4. Again the same 
trend can be observed for other values of Hart- 
mann number [19]. 

Effects of changing the Hartmann number can 
readily be seen by comparing Fig. 3(b) with 
Fig. 4. An increase in the Hartmann number 
significantly increases the temperature. Similar 
effects can also be observed by comparing Fig. 
5(b) with Fig. 6. 

Effects of the heat-generation parameter, q, can 
be studied by examining Figs, 5(a-c) and 6. 
Increasing the heat-generation parameter when 
it is greater than zero causes an increase in the 
difference between the wall and bulk tempera- 
ture, which in turn results in a decrease in the 
pseudo local Nusselt number as shown in Figs. 
7ta-c) and 8. A similar trend can be seen when q 
is negative. 

Referring to Fig. 5(a) for the case of q = -05, 
the wall temperature, 0,, becomes more nega- 
tive than the bulk temperature, &,, at the posi- 
tion X/16 z 9.8 x lo-‘. Before this point is 
reached from the inlet of the duct, the tempera- 
ture difference, ABx = 8,, x - 0,,,, approaches 
zero positively. Thus, the pseudo-local Nusselt 
number, I& should approach infinity positively. 
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Then at the position where the wall temperature 
becomes more negative than the bulk tempera- 
ture, the sign of $ is reversed and becomes 
negative (see Fig. 7a). A similar trend can be 
observed for the case in which M = 4, e = 0.8, 
q = -0.5 in Figs. 5(b) and 7(b). 

Figure 9 presents a comparison of the pseudo- 
local Nusselt number, $, for various values of the 
Hartmann number, M. The dimensionless bulk 
temperature increases more rapidly than the 
dimensionless wall temperature as the Hartmann 
number increases. Therefore, for the cases in 
which q 3 0, &,,x > 8,,x, the temperature dif- 
ference between the wall and bulk temperature, 
8 - 8, x will decrease, and the pseudo-local 
Nuiselt number, $, will increase [see equation 
(15)] as the Hartmann number increases. For 
the cases in which q < 0 and t3;,x < 0,,., an 
increase in M means an increase of t&x - l3,,, 
as well as a decrease of the magnitude of the 
pseudo-local Nusselt number, $. 

Figure 10 shows the variation of temperature 
with position along the duct. The distance from 
the centerline is the parameter. Only one case is 
presented to exemplify the trend which occurs in 
all cases. 

Figures 1 l(a) and (b) show the comparison of 
the present work with that of Michiyoshi and 

TO MHD FLOW 185 

Matsumoto [12]. These authors assumed the 
viscous dissipation term to be negligible, and 
thus for the case of q = 0, for both Hartmann 
numbers of 4 and 8, the results reported by 
Michiyoshi and Matsumoto and those evaluated 
in this work should be identical. The reason that 
the former set of results is lower than those of the 
present work for small X will be explained later. 
For the cases in which 9 = 0, the results of 
Michiyoshi and Matsumoto differ greatly from 
those reported in this work. This difference is not 
surprising because the viscous dissipation was 
assumed to be negligible in the former presenta- 
tion. As the Hartmann number increases the 
viscous term becomes less crucial and Michiyoshi 
and Matsumoto’s results approach those re- 
ported in this work as shown in Fig. II(b). A 
comparison of the results given in these figures 
offers an excellent opportunity to observe the 
effects of viscous dissipation. The comparison 
of results is made for the open circuit case (e = 
1.0) because this was the only case investigated 
by Michiyoshi and Matsumoto. 

As stated in the introductory remarks, Perl- 
mutter and Siegel [9] studied the same problem 
investigated in this work, and reported the 
results in the form of equations containing 
infinite series and, for certain special cases, 

16 

FIG. 9. Comparison of pseudo-local Nusselt numbers for various Hartmann numbers 
and q = 0, - 1.0. 
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FIG. 10. Variation of temperature with position along the duct, M = 10, e = 08, and q = 1.0, 
- 1.0. 

50-‘...._ * * . * **‘-. 
--._ 

40. 
--w_ 

_-.- 
-..-_ ------_________-- 17 =-0.75 

30. __I_ 
_--_ 

20. 

\ -~~-__I____IIITI:~~~*, 

-.______ --------__ 

IO- 
,&-__-~-~~~----__ 

-_-_ 
77’0 

O- ~=-I’0 

Fit. 1 l(a). Comparison of Nusselt number for the case M = 4, r = 1.0. 

graphical solutions are presented. Table 2 shows 
a comparison of the local Nusselt number for the 

Table 2. Local Nusselr number at X + x, 

case in which X approaches infinity and no in- Hartmann number Local Nusselt number 

ternal heat generation in the fluid, that is for the 
case of q = 0, is presented for values of the Hart- 

_..._ 
Perlmutter and 

Siegel [9j 
Present work 

mann number of 4 and 10. Figure 12 compares 
the local Nusselt number calculated from Perl- 

mutter and Siegel’s results with the results of 

._ .--- 
4 9.1013 9.0530 

10 10.2585 10.2016 
- 
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---------________ s-~0-0.25 - 

_r_- 
_______-'---______3'-0.5 

.' 
.*' 

0' , 

‘/’ 
------- Michiyoshi ond Matsumoto [I21 

I 
i’ 

- Present Work 
, 

I& 1x16 I.0 
X 

FIG. 1 l(b). Comparison of pseudo-local Nusselt number for the case M = 8, e = 1.0. 

Present Work 

P<rlmut+er ond Siegel 191 

l.lo-2 I*16 I.0 
X 

FIG. 12. Comparison of loca1 Nusselt number for the case M = 10, e = 1.0, q = -0.09. 

this work throughout the thermal entrance solution is truncated in numerical computation. 
region for the case q = 0.09, e = 1.0, and A4 = These authors reported eigenvalues for only 
10.0. The present work is in fair agreement with seven terms in the infinite series; therefore, the 
the results of Perlmutter and Siegel if X is greater series were probably truncated after the seventh 
than 0.3. The deviation when X is less than 0.3 term. A similar trend was encountered in the case 
perhaps is due to the error incurred when the of Poiseuille flow (M = 0, and q = 0). It was 
infinite series found in Perlmutter and Siegel’s shown [lS] that the results obtained by a series 
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solution with 20 terms of eigenvalues closely 
agree with those obtained by the finite differ- 
ence method applied in the present work, while 
the results obtained by the series solution with 
10 terms of eigenvalues are much lower in the 
region of small X. The methods used in reference 
[9] and that in reference [12] are essentially the 
same. Therefore, the explanation as given above 
can be used to account for the discrepancy 
between the present results and those given in 
reference [9]. 

CONCLUSION 

Forced convection heat transfer to an MHD 
fluid in the thermal entrance region of a flat 
duct is investigated in the present work. Both 
Joule heating and viscous dissipation are not 
neglected. Effects of neglecting the viscous dissi- 
pation are evaluated. Influences of the Hartmann 
number, heat-generation parameter, and electric 
field factor on the development of temperature 
profile and local Nusselt number are discussed. 

Results are compared with those of the pre- 
vious work available for some cases. It appears 
that the present results obtained by means of a 
finite difference analysis are more accurate than 
the previous results obtained by analytical 
methods. 
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9. 
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R&sum~Le transport de chaleur a un fluide conducteur dans la region d’entree thermique dune conduite 
bidimensionnelle a CtC ttudie. L’ecoulement est un Ccoulement laminaire de Hartmann entierement ttabli, 
et Ton suppose que le flux de chaleur est constant. Les profils de temperature en regime Ctabli ainsi que le 
nombre de Nusselt local sont present&s graphiquement pour rlcs valeurs du paramttre de production de 
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chaleur &gales a - 1, - 0,5,0,0,5 et 1; pour des nombres de Hartmann de 0,4 et 10, et pour des paramttres 
de champ blectrique de 0,5,0,8 et 1. Les rtsultats present&s s’appliquent dans le cas d’un nombre de Prandtl 

quelconque. Certains cas sont compares avec le travail actuel. 

Zusammenfawmg-Der Warmeiibergang an ein MHD-Medium in der thermischen Einlaufstrecke eines 
ebenen Kanals wurde untersucht. Es war eine laminare und voll ausgebildete Hartmannstromung vor- 
handen und der Warmestrom an der Wand wird als konstant angesehen. Die sich ergebenden Temperatur- 
profile wie such die ortliche Nusseltzahl sind graphisch wiedergegeben fur einen Wlrmeerzeugungspara- 
meter von - l,O, -0,5, 0, 0,5 und 1.0; fur die Hartmannzahl von 0, 4 und IO und fiir den Faktor des elek- 
trischen Feldes von 0,5, 0,s und 1,O. Die Ergebnisse sind fur Falle beliebiger Prandtlzahl anwendbar. Fur 

einige Falle sind Vergleiche mit der vorangegangenen Arbeit durchgefiihrt. 

AmoTaqm-K3xenoBaiw~ Tennoo6men MrA noToKa BO BXOAHOM yYacTKe nnoc~ofi ~py6b1. 
Teseme RBJIHeTCR JIElMHHapHL.JM W IlOJIHOCTbIO paBBHTbIM (WOK XapTMaHHa) II TenJIOBOfi 

nOTOK Ha CTeHKe CWiTaeTcR ~OCTOBHH~IM. Paasnsaromuecn TemnepaTypribre npO@iJlH, a 

TaK~eJIOKanbHOe4MCJIO HyCCenbTanpe~cTaBneH~rpa~H9ecK~AnRnapaMeTpao6paaoBanllrl 

TenJIa-18; -0,5;0;0,5 II 1,O; AJIR WCJIa XapTMaHHa 0,4 II 10 II AJIJI HanpS%KeHHOCTH 
NIeKTpHYeCKOrO IIOJXR 0,5; 0,s II l,O. npegCTaBJIeHHbIe peaynbTaTbI MOWHO IIpHmeHKTb K 

csyvaJim c nro6nm wicno~ IIpaHnTnri. rIpoBeneH0 cpaBHeHIie c peaynbTaTamu npenuRyqeii 

pa6oTbI. 
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